首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5588篇
  免费   274篇
  国内免费   1549篇
化学   3424篇
晶体学   21篇
力学   128篇
综合类   5篇
数学   1176篇
物理学   2657篇
  2024年   18篇
  2023年   136篇
  2022年   150篇
  2021年   159篇
  2020年   159篇
  2019年   195篇
  2018年   195篇
  2017年   200篇
  2016年   224篇
  2015年   236篇
  2014年   300篇
  2013年   506篇
  2012年   332篇
  2011年   443篇
  2010年   294篇
  2009年   519篇
  2008年   433篇
  2007年   495篇
  2006年   411篇
  2005年   259篇
  2004年   237篇
  2003年   244篇
  2002年   178篇
  2001年   163篇
  2000年   121篇
  1999年   128篇
  1998年   102篇
  1997年   87篇
  1996年   66篇
  1995年   52篇
  1994年   40篇
  1993年   42篇
  1992年   39篇
  1991年   25篇
  1990年   21篇
  1989年   29篇
  1988年   25篇
  1987年   19篇
  1986年   20篇
  1985年   22篇
  1984年   13篇
  1983年   7篇
  1982年   12篇
  1981年   18篇
  1980年   6篇
  1979年   13篇
  1978年   7篇
  1977年   5篇
  1973年   4篇
  1966年   1篇
排序方式: 共有7411条查询结果,搜索用时 15 毫秒
41.
Here, we for the first time introduce ethoxylation chemistry to develop a new octupolar cyano-vinylene-linked 2D polymer framework (Cyano-OCF-EO) capable of acting as efficient mixed electron/ion conductors and metal-free sulfur evolution catalysts for dual-promoted Li and S electrochemistry. Our strategy creates a unique interconnected network of strongly-coupled donor 3-(acceptor-core) octupoles in Cyano-OCF-EO, affording enhanced intramolecular charge transfer, substantial active sites and crowded open channels. This enables Cyano-OCF-EO as a new versatile separator modifier, which endows the modified separator with superior catalytic activity for sulfur conversion and rapid Li ion conduction with the high Li+ transference number up to 0.94. Thus, the incorporation of Cyano-OCF-EO can concurrently regulate sulfur redox reactions and Li-ion flux in Li−S cells, attaining boosted bidirectional redox kinetics, inhibited polysulfide shuttle and dendrite-free Li anodes. The Cyano-OCF-EO-involved Li−S cell is endowed with excellent overall electrochemical performance especially large areal capacity of 7.5 mAh cm−2 at high sulfur loading of 8.7 mg cm−2. Mechanistic studies unveil the dominant multi-promoting effect of the triethoxylation on electron and ion conduction, polysulfide adsorption and catalytic conversion as well as previously-unexplored −CN/C−O dual-site synergistic effect for enhanced polysulfide adsorption and reduced energy barrier toward Li2S conversion.  相似文献   
42.
The dynamic restructuring of Cu surfaces in electroreduction conditions is of fundamental interest in electrocatalysis. We decode the structural dynamics of a Cu(111) electrode under reduction conditions by joint first-principles calculations and operando electrochemical scanning tunneling microscopy (ECSTM) experiments. Combining global optimization and grand canonical density functional theory, we unravel the potential- and pH-dependent restructuring of Cu(111) in acidic electrolyte. At reductive potential, Cu(111) is covered by a high density of H atoms and, below a threshold potential, Cu adatoms are formed on the surface in a (4×4) superstructure, a restructuring unfavorable in vacuum. The strong H adsorption is the driving force for the restructuring, itself induced by the electrode potential. On the restructured surface, barriers for hydrogen evolution reaction steps are low. Restructuring in electroreduction conditions creates highly active Cu adatom sites not present on Cu(111).  相似文献   
43.
Main group systems capable of undergoing controlled redox events at extreme potentials are elusive yet highly desirable for a range of organic electronics applications including use as energy storage media. Herein we describe phosphine oxide-functionalized terthiophenes that exhibit two reversible 1e reductions at potentials below −2 V vs Fc/Fc+ (Fc=ferrocene) while retaining high degrees of stability. A phosphine oxide-functionalized terthiophene radical anion was synthesized in which the redox-responsive nature of the platform was established using combined structural, spectroscopic, and computational characterization. Straightforward structural modification led to the identification of a derivative that exhibits exceptional stability during bulk 2 e galvanostatic charge–discharge cycling and enabled characterization of a 2 e redox series. A new multi-electron redox system class is hence disclosed that expands the electrochemical cell potential range achievable with main group electrolytes without compromising stability.  相似文献   
44.
MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.  相似文献   
45.
As an emerging class of promising porous materials, the development of two-dimensional conductive metal organic frameworks (2D c-MOFs) is hampered by the few categories and tedious synthesis of the specific ligands. Herein, we developed a nonplanar hexahydroxyl-functionalized Salphen ligand (6OH-Salphen) through a facile two-step synthesis, which was further applied to construct layered 2D c-MOFs through in situ one pot synthesis based on the synergistic metal binding effect of the N2O2 pocket of Salphen. Interestingly, the C2v-symmetry of ligand endows Cu-Salphen-MOF with periodically heterogeneous pore structures. Benefitting from the higher metal density and shorter in-plane metal-metal distance, Cu-Salphen-MOF showcased excellent NO2 sensing performance with good sensitivity, selectivity and reversibility. The current work opens up a new avenue to construct 2D c-MOF directly from nonplanar ligands, which greatly simplifies the synthesis and provides new possibilities for preparing different topological 2D c-MOF based functional materials.  相似文献   
46.
In this work the mechanism of L-lactide polymerization promoted by NSSN zirconium complexes was investigated through DFT methods with the aim to understand as the electronic and steric features of the ligand affect the energy reaction. It was observed that the rate determining step of the process is the opening of the L-lactide ring and that by increasing the steric hindrance, evaluated by changing geometric parameters and topographic steric maps, or the electron-withdrawing properties of the ligand, the corresponding energy barrier increases. On the other hand, calculations foresee that a small and electron-releasing substituent on the nitrogen atom of the ligand, such as the methyl group, is desirable in order to obtain NSSN zirconium based catalysts with improved activity in the ROP of the L-lactide.  相似文献   
47.
Two new Zn(II) complexes bearing tridentate hydrazone-based ligands with NNO or NNS donor atoms were synthesised and characterised by elemental analysis, infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies, and single crystal X-ray diffraction methods. These complexes, together with four previously synthesised analogues, having hydrazone ligands with a NNO donor set of atoms, were successfully employed as catalysts in the ketone-amine-alkyne (KA2) coupling reaction, furnishing tetrasubstituted propargylamines, compounds with unique applications in organic chemistry. DFT calculations at the CAM-B3LYP/TZP level of theory were performed to elucidate the electronic structure of the investigated Zn(II) complexes, excellently correlating the structure of the complexes to their catalytic reactivity.  相似文献   
48.
49.
Transfer hydrogenation of azobenzene with ammonia borane mediated by pincer bismuth complex 1 was systematically investigated through density functional theory calculations. An unusual metal-ligand cooperation mechanism was disclosed, in which the saturation/regeneration of the C=N functional group on the pincer ligand plays an essential role. The reaction is initiated by the hydrogenation of the C=N bond (saturation) with ammonia borane to afford 3CN , which is the rate-determining step with Gibbs energy barrier (ΔG) and Gibbs reaction energy (ΔG) of 25.6 and −7.3 kcal/mol, respectively. 3CN is then converted to a Bi−H intermediate through a water-bridged pathway, which is followed up with the transfer hydrogenation of azobenzene to produce the final product N,N′-diphenylhydrazine and regenerate the catalyst. Finally, the catalyst could be improved by substituting the phenyl group for the tert-butyl group on the pincer ligand, where the ΔG value (rate-determining step) decreases to 24.0 kcal/mol.  相似文献   
50.
High-mobility and strong luminescent materials are essential as an important component of organic photodiodes, having received extensive attention in the field of organic optoelectronics. Beyond the conventional chemical synthesis of new molecules, pressure technology, as a flexible and efficient method, can tune the electronic and optical properties reversibly. However, the mechanism in organic materials has not been systematically revealed. Here, we theoretically predicted the pressure-depended luminescence and charge transport properties of high-performance organic optoelectronic semiconductors, 2,6-diphenylanthracene (DPA), by first-principle and multi-scale theoretical calculation methods. The dispersion-corrected density functional theory (DFT-D) and hybrid quantum mechanics/molecular mechanics (QM/MM) method were used to get the electronic structures and vibration properties under pressure. Furthermore, the charge transport and luminescence properties were calculated with the quantum tunneling method and thermal vibration correlation function. We found that the pressure could significantly improve the charge transport performance of the DPA single crystal. When the applied pressure increased to 1.86 GPa, the hole mobility could be doubled. At the same time, due to the weak exciton coupling effect and the rigid flat structure, there is neither fluorescence quenching nor obvious emission enhancement phenomenon. The DPA single crystal possesses a slightly higher fluorescence quantum yield ~ 0.47 under pressure. Our work systematically explored the pressure-dependence photoelectric properties and explained the inside mechanism. Also, we proposed that the external pressure would be an effective way to improve the photoelectric performance of organic semiconductors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号